Distance d'un point à une courbe	
Activité en amont :	
Activités mentale de début d'heure : 2, 3 calculs de	Exercice d'optimisation :
dérivée.	-La boite à coin carré.
	-Autour de f(x)=0 (acte 1)

Compétence(s) calculatoire(s) travaillée(s) :

Reconnaissance de formes.

Application directe des formules.

Outils: Calcul mental ou manuel

Activité principale : Distance d'un point à une courbe.

Dans le plan muni d'un repère orthogonal $(0; \vec{\iota}, \vec{j})$, la courbe \mathcal{C} est la courbe représentative de la fonction exponentielle. Le point B a pour coordonnées B(2;-1) et M est un point quelconque de \mathcal{C} .

Le but de cet exercice est de trouver, s'il existe, le point M de \mathcal{C} pour lequel la distance BM est minimale.

Cette distance minimale, si elle existe, sera appelée distance du point B à la courbe \mathcal{C} .

Partie A : A l'aide d'un logiciel de géométrie dynamique, réaliser une figure dynamique correspondant à la situation. Faire une conjecture sur la position de M pour laquelle BM semble minimale. On note M_0 ce point. Tracer le segment BM_0 et la tangente à \mathcal{C} en M_0 . Qu'observe-t-on ?

Partie B:

Démontrer les conjectures faites au (A).

On pourra s'intéresser à BM² plutôt qu'à BM.

Utilisez la figure réalisée au (A) pour vous assurer de la cohérence des calculs faits.

Compétence(s) calculatoire(s) travaillée(s) :

Calcul de dérivées.

Etude de signes.

Objectif(s): Mettre en œuvre de manière autonome une étude de fonctions afin de résoudre un problème.

Outils: Géométrie dynamique

Activités en aval :	
Remédiation :	Approfondissement :
Reprise de cet exercice - Guide de résolution - Calculs épaulés par un logiciel de calcul formel.	Que se passe-t-il si la fonction f est la fonction définie sur \mathbb{R} par $f(x) = -\frac{1}{2}x^3 + 2x + 2$? Que se passe-t-il si le point B est le point de coordonnées B(1; 0)?
Remédiation « méthode » : Guide de résolution : Problèmes d'optimisation : Quel est le minimum de ? 1) Déterminer la fonction dont on cherche le minimum. Ici, la fonction donnant BM² en fonction de l'abscisse x de M. 2) Etudier f pour trouver son minimum. a. Calculer la dérivée de f. b. Etudier son signe. c. Conclure.	 Remédiation « calcul » : Vérifier que BM² = (x - 2)² + (exp x + 1)² où x est l'abscisse de M. Utiliser xCas pour étudier la fonction x → (x - 2)² + (exp x + 1)². En déduire la position de M₀. Retrouver les résultats précédents sans utiliser de logiciel.