Activités autour des problèmes du type f(x) = 0

Etude d'une suite ...

Pour l'ensemble des activités, on suppose avoir traité les points suivants du programme :

- o Continuité
- o TVI
- Limite de fonction
- Suites

Activité en amont : Suites géométriques - Suites arithmétiques Objectifs :

- Travail sur les puissances
- Utilisation éventuelle du calcul formel pour les deux premières questions.

On considère les suites (u_n) et (v_n) définies pour tout entier naturel n par :

$$u_n = \frac{2^n - 4n + 3}{2}$$
 et $v_n = \frac{2^n + 4n - 3}{2}$

On note (w_n) et (t_n) les suites définies pour tout entier naturel n par : $w_n = u_n + v_n$ et $t_n = u_n - v_n$.

- 1. Montrer que (w_n) est géométrique.
- 2. Montrer que (t_n) est arithmétique .
- 3. Exprimer u_n en fonction de w_n et de t_n .
- 4. En déduire l'expression de $S_n = u_0 + u_1 + \cdots + u_n$ en fonction de n.

Activité Principale : Autour de l'étude d'une suite ...

Objectifs:

- Travail sur les puissances
- Dégager à l'aide du logiciel de calcul formel la dérivée de u^n
- Calcul de limites

Outils: Tableur, logiciel de calcul formel

Enoncé:

Pour tout entier naturel n, on pose $u_n = \frac{n^{10}}{2^n}$.

On définit ainsi une suite $(u_n)_{n\in\mathbb{N}^*}$.

1. Conjecturer à l'aide du tableur, la monotonie (à partir d'un certain rang?), la convergence de la suite (u_n) .

2. Démontrer, pour tout entier naturel n non nul, l'équivalence suivante :

$$u_{n+1} \le 0,95u_n \Leftrightarrow (1+\frac{1}{n})^{10} \le 1,9$$

Question technique ... Il n'est pas interdit de s'aider d'un logiciel de calcul formel pour vérifier les éventuelles simplications!!!

- 3. On considère la fonction f définie sur $[1; +\infty[$ par $f(x) = (1+\frac{1}{x})^{10}$.
 - (a) Etudier le sens de variation et la limite en $+\infty$ de la fonction f.

 Dans cette question se pose naturellement le problème de la dérivée de la fonction f intéressant de voir les différentes stratégies et surtout très efficace l'utilisation d'un logiciel de calcul formel!!
 - (b) Montrer qu'il existe dans l'intervalle $[1; +\infty[$ un unique nombre réel α tel que $f(\alpha) = 1, 9$.
 - (c) Déterminer l'entier naturel n_0 tel que $n_0 1 \leqslant \alpha \leqslant n_0$.
 - (d) Montrer que, pour tout entier naturel n supérieur ou égal à 16, on a :

$$(1+\frac{1}{n})^{10} \leqslant 1,9$$

- 4. Déterminer le sens de variation de la suite (u_n) à partir du rang 16.
- 5. En utilisant un raisonnement par récurrence, prouver, pour tout entier naturel n supérieur ou égal à 16, l'encadrement :

$$0 \leqslant u_n \leqslant 0,95^{n-16}u_{16}$$

En déduire la limite de la suite (u_n) .

Activité en aval : toujours l'étude d'une suite ...

Objectifs:

- Prendre des initiatives Conjecturer
- Etude de suite du type $u_{n+1} = f(u_n)$.
- Réinvestissement des activités précédentes

Outils : Tableur, logiciel de calcul formel

Démontrer que la suite définie par $u_0 = 1$ et, pour tout entier naturel n, par $u_{n+1} = 2 + \ln u_n$ converge vers un réel ℓ tel que $3, 1 < \ell < 3, 2$.