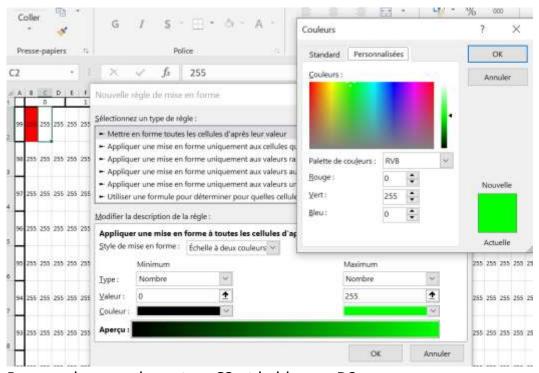

TROUVER LE CODE DU CADENAS DE MARIO

Mario a perdu la combinaison à 4 lettres du cadenas qui sécurise son coffre. Le code est caché dans une image numérique.

Votre objectif : utiliser le protocole de codage pour retrouver le code à 4 lettres et ouvrir le coffre.

Protocole utilisé pour cacher le code dans l'image :

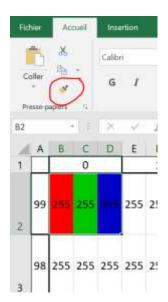
- Chaque lettre du code à cacher sera représentée par son code ASCII, écrit en base 2. Par exemple, le code ASCII de "A" en binaire, sur un octet (8 bits) est 01000001.
- Le codage de la première lettre débute sur le pixel de coordonnées (colonne=19 ; ligne=29). Une seule lettre est cachée par ligne et le codage de la deuxième lettre débute sur le pixel de coordonnées (colonne=19 ; ligne=28)...
- Les caractères « 0 » ou « 1 » sont « cachés » dans les composantes RVB de certains pixels:
 - Si le nombre est pair il correspond à un « 0 » Si le nombre est impair il correspond à un « 1 »
- Si, dans l'image initiale, la parité du nombre ne correspond pas au caractère à cacher, ajouter 1, sinon le laisser inchangé.


Exemple pour coder la lettre « V » (tableau caractères ASCII sur fiche plastifiée) :

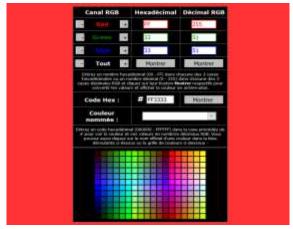
		Pixel 1			Pixel 2			Pixel 3	
Image initiale	138	65	23	234	87	34	126	90	40
Caractère à cacher	0	1	0	1	0	1	1	0	
Image modifiée	138	65	24	235	88	35	127	90	40

DE L'AIDE POUR RELEVER LE DEFI

I-Activité de coloriage numérique : (Activité « branchée » et nécessite Excel, par l'enseignant au bureau ? facultatif)


Ouvrez dans Excel le tableau de nombres de l'image Mario100x101.png Sur la cellule B2 : Accueil\Style\Mise en forme conditionnelle\nouvelle règle :

Renouvelez pour le vert en C2 et le bleu en D2


Sélectionnez la plage de cellules (A2 :C2), copiez le format (outil pinceau) à toutes les cellules du tableau.

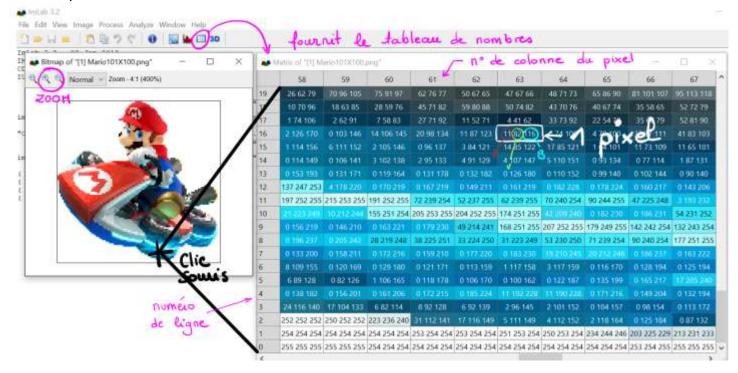
Utiliser le zoom pour réduire la taille de l'image au maximum. Voyez-vous l'image ? Percevez-vous les pixels ?

Activité Branchée (PC ou smartphone)

Utiliser le simulateur ci-dessous pour déterminer les composantes R, V, B associées à des pixels de différentes couleurs.

http://www.proftnj.com/RGB3.htm

CYAN	R =	V=	B=
JAUNE	R =	V=	B=
VIOLET	R =	V=	B=
ORANGE	R =	V=	B=
GRIS CLAIR			


Percevez-vous une variation de couleur si vous augmentez chaque composante de 1 ?

II-Activité déchiffrage du code

(possible en débranché avec fiches plastifiées)

Ouvrez l'image Mario101x100-CODE.png dans le logiciel ImLab.

Affichez le tableau de nombres de l'image, cliquez sur des pixels de différentes couleurs pour vous déplacer dans le tableau de nombres.

- Tracez deux axes fléchés, de même origine 0, orientés dans le sens croissant des numéros de colonne et de ligne du pixel. Ecrire « ligne » et « colonne » à l'extrémité de l'axe correspondant.
- Repérez, par une croix sur l'image ci-dessous, le pixel de coordonnées (colonne=19; ligne=29). Faites figurer les coordonnées du pixel sur les axes correspondants.
- Noter sur les axes le nombre total de pixels en hauteur, en largeur.
- Calculer la définition de l'image : elle est égale au nombre total de pixels de l'image

Déchiffrez le code. Utilisez ce tableau pour présenter vos résultats.

À la fin de cette activité je retiens que :

- Une image est constituée de pixels
- La <u>définition</u> d'une image est égale au <u>nombre total de pixels</u>
 (3 Mégapixels = 3 millions de pixels)
- Une image peut être représentée par un <u>tableau de nombres</u> où une case représente un pixel
- La <u>position du pixel</u> est repérée par son <u>numéro de colonne</u> (noté x) et son <u>numéro de ligne</u> (noté y) par rapport à une origine.
- <u>L'origine</u> (x=0; y=0) est située dans un <u>coin</u> de l'image qu'il faudra <u>identifier</u>.
 (En bas à gauche dans Imlab, en haut à droite dans le langage Python)

Attention : une image de 100 pixels en hauteur est représentée par un tableau de 100 lignes numérotées de 0 à 99.

- La couleur du pixel s'obtient par <u>synthèse additive</u> des couleurs des 3 sous-pixels Rouge, Vert et Bleu
- La couleur d'un sous-pixel est associée à un nombre allant de 0 à 255
- Pour obtenir un pixel gris les trois sous-pixels doivent avoir la même valeur.

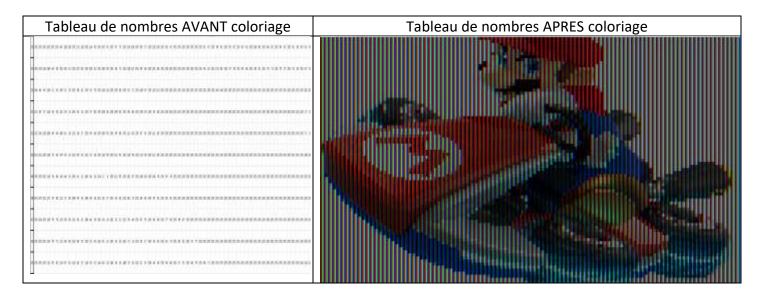
Couleur du pixel	R	V	В
Noir	0	0	0
Blanc	255	255	255
Gris clair	178	178	178
Rouge	255	0	0
Vert	0	255	0
Bleu	0	0	255
Jaune	255	255	0
Cyan	0	255	255
Magenta	255	0	255

POUR LE PROFESSEUR

Matériel au bureau :

		Très visuel pour la synthèse additive. Allumée dès l'entrée en classe				
Loupe binoculaire avec webca vidéoprojeté	ım sur oculaire	Permet d'observer et comparer les pixels des écrans de téléphones de différentes marques. Montrer en introduction de l'activité				
Un coffre fermé par un caden « CLAN »)	as 4 lettres (code	A cette heure, n'ayant pas le cadenas je ne sais pas s'il est possible d'écrire « CLAN ». Au besoin modifier l'activité avec tout autre mot de 4 lettres Groupes de 4 élèves, 1 mot par élève				
	Une peau de banane pour mettre dans le coffre	;0))				
Prévoir tableau ASCII plastifié	(1 pour 2)					

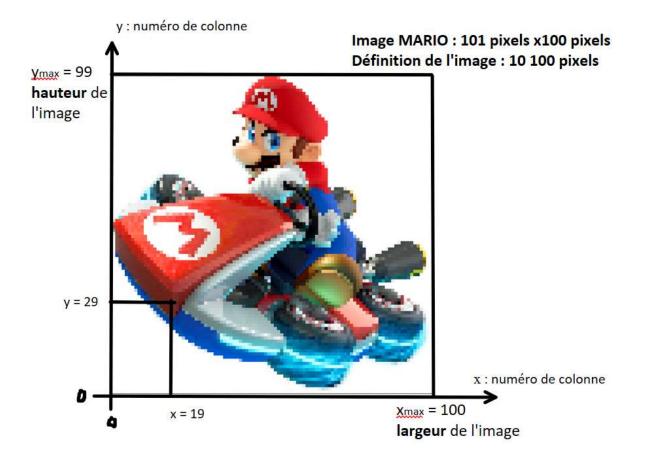
Objectifs visés:


Travail préparatoire au traitement de l'image en Python :

Lors de la programmation d'un algorithme de traitement d'image, l'élève sera amené à lire des programmes où il devra se « déplacer mentalement » dans le tableau de nombres par des « doubles boucles for » et à modifier par calcul les composantes R,V,B.

Le logiciel ImLab permet de visualiser la matrice, en couleur, des nombres de l'image et de donner du sens aux 5 nombres (2 coordonnées et 3 composantes couleurs) associés à un pixel coloré.

III-Activité de coloriage numérique :


1°) Passage d'un tableau de nombres à une image colorée avec mise en forme conditionnelle. Limite du zoom arrière dans excel, les pixels sont toujours visibles mais l'image apparait. On peut s'éloigner de l'écran.

2°)Le simulateur de couleur fonctionne sur téléphones portables. Les élèves peuvent scanner le QR-Code. Tester différentes couleurs. Insister sur le GRIS, les couleurs secondaires : Jaunes Cyan, Magenta.

IV-Activité déchiffrage du code

Utiliser le logiciel Imlab (en branché) ou feuille suivante plastifiée (en débranché) pour légender l'image fournie.

Utiliser Imlab (branché) ou feuille plastifiées (en débranché) pour repérer et lire les valeurs RVB des pixels où le code est caché.

Utiliser un convertisseur en ligne (connecté) ou tableau plastifié (débranché) pour convertir le nombre binaire en caractère ASCII correspondant

Réponse au défi

В	C	D	Ε	F	G	Н	1	1	K	t	M	N	0	р	Q	R	S	T	U	٧	W
lmage	initial	e												b8	b7	b6	65	b4	b3	b2	b1
121	47	40	115	45	41	111	28	22		c	67	01000011	=	.0	1	0	0	0	0	1	1
120	48	42	112	42	37	106	27	20		L	76	01001100	-	0	1	0	0	1	1	0	0
118	46	39	111	42	38	94	13	25		Α	65	01000001	-	0	1	0	0	0	0	0	1
117	45	39	109	43	39	15	30	104		N	78	01001110	-	0	1	0	0	1	1	1	0
			Test	de pa	rité																
FAUX	FAUX	VRAI	FAUX	FAUX	FAUX	FAUX	VRAI								L						
VRAI	VRAI	VRAI	VRAI	VRAI	FAUX	VRAI	FAUX														
VRAI	VRAI	FAUX	FAUX	VRAI	VRAI	VRAI	FAUX														
FAUX	FAUX	FAUX	FAUX	FAUX	FAUX	FAUX	VRAI														
VRAI	VRAI	VRAI	VRAI	VRAI	VRAI	VRAI	VRAI														
lmage	modif	iée																			
122	47	40	116	46	42	111	29														
120	49	42	112	43	37	106	28														
118	47	40	112	42	38	94	13														

Activité débranchée : fournir les feuilles suivantes plastifiées

Caractère ASCII	Nombre binaire sur un octet
А	01000001
В	01000010
С	01000011
D	01000100
E	01000101
F	01000110
G	01000111
Н	01001000
I	01001001
J	01001010
K	01001011
L	01001100
М	01001101
N	01001110
0	01001111
Р	01010000
Q	01010001
R	01010010
S	01010011
Т	01010100
U	01010101
V	01010110
W	01010111
X	01011000
Υ	01011001
Z	01011010

Extrait du tableau de nombre de l'image modifiée

₩ M	atrix of "[0] M	ario101X100 -	CODE.png"	k			X
	19	20	21	22	23	24	2 ^
37	253 55 45	242 38 16	230 55 15	217 36 26	209 44 34	193 69 58	191 8
36	231 52 31	216 37 29	204 41 32	193 54 42	194 87 75	185 75 69	182
35	194 60 53	188 45 37	192 74 55	181 72 70	177 69 69	180 73 72	182
34	159 48 51	159 55 59	169 65 65	173 66 65	174 65 61	185 79 78	143 !
33	160 53 56	161 56 60	167 63 63	173 66 64	180 75 70	129 48 42	122
32	164 56 58	163 60 58	171 68 69	145 54 47	124 40 36	118 37 32	86 3
31	124 47 41	119 46 41	114 39 39	119 37 31	116 38 29	99 30 24	100 9
30	122 46 39	116 45 41	114 33 30	114 32 26	104 32 25	96 89 88	104 10
29	122 47 40	116 46 42	111 29 22	106 30 24	86 77 76	101 104 102	109 1
28	120 49 42	112 43 37	106 28 20	79 18 12	99 101 100	106 116 114	117 13
27	118 47 40	112 42 38	94 13 25	94 97 96	103 113 112	107 121 119	114 13
26	118 45 40	110 43 39	15 30 104	103 122 121	105 119 117	109 126 124	109 12
25	116 47 40	81 10 15	17 54 141	16 53 140	125 166 167	108 124 123	110 12
24	103 50 45	14 50 137	18 57 148	17 61 153	15 61 154	20 59 155	108 12
23	6 54 144	10 55 142	5 60 150	12 61 154	14 63 156	12 62 156	12 63
22	2 68 157	2 63 155	6 64 158	15 66 159	19 62 156	14 63 157	21 6
21	0 77 169	3 66 160	4 66 158	5 68 160	7 64 157	9 67 162	10 6
20	0 85 186	0 79 177	0 73 168	4 67 162	9 65 160	4 66 161	12 64
19	255 255 255	0 82 184	0 84 181	2 68 161	3 71 165	2 65 164	7 70
18	255 255 255	255 255 255	0 90 199	0 85 185	0 76 177	1 76 175	3 71 🗸
<							> .::

Extrait du tableau de nombre de l'image modifiée

₩ Ma	trix of "[1] Mar	io101X100.pr	ng"		-	- 🗆	×	
	19	20	21	22	23	24		^
37	253 55 45	242 38 16	230 55 15	217 36 26	209 44 34	193 69 58	191	
36	231 52 31	216 37 29	204 41 32	193 54 42	194 87 75	185 75 69	182	ľ
35	194 60 53	188 45 37	192 74 55	181 72 70	177 69 69	180 73 72	182	
34	159 48 51	159 55 59	169 65 65	173 66 65	174 65 61	185 79 78	143	
33	160 53 56	161 56 60	167 63 63	173 66 64	180 75 70	129 48 42	122	
32	164 56 58	163 60 58	171 68 69	145 54 47	124 40 36	118 37 32	86	
31	124 47 41	119 46 41	114 39 39	119 37 31	116 38 29	99 30 24	100	
30	122 46 39	116 45 41	114 33 30	114 32 26	104 32 25	96 89 88	104	
29	121 47 40	115 45 41	111 28 22	106 30 24	86 77 76	101 104 102	109	
28	120 48 42	112 42 37	106 27 20	79 18 12	99 101 100	106 116 114	117	
27	118 46 39	111 42 38	94 13 25	94 97 96	103 113 112	107 121 119	114	
26	117 45 39	109 43 39	15 30 104	103 122 121	105 119 117	109 126 124	109	1
25	116 47 40	81 10 15	17 54 141	16 53 140	125 166 167	108 124 123	110	
24	103 50 45	14 50 137	18 57 148	17 61 153	15 61 154	20 59 155	108	
23	6 54 144	10 55 142	5 60 150	12 61 154	14 63 156	12 62 156	12	
22	2 68 157	2 63 155	6 64 158	15 66 159	19 62 156	14 63 157	21	
21	0 77 169	3 66 160	4 66 158	5 68 160	7 64 157	9 67 162	10	
20 5	0 85 186	0 79 177	0 73 168	4 67 162	9 65 160	4 66 161	12	
19 5	255 255 255	0 82 184	0 84 181	2 68 161	3 71 165	2 65 164	7 7	
18 5	255 255 255	255 255 255	0 90 199	0 85 185	0 76 177	1 76 175	3 7	\downarrow
<							>	.::

Remarques diverses:

- Droits image MARIO: http://pngimg.com/download/30576, CC 4.0 BY-NC
- Logiciel Imlab téléchargeable sur http://imlab.sourceforge.net/
 La version « no setup » ne nécessite pas d'installation : copier-coller dans mes documents et lancer le « imlab.exe »
- Le fichier Excel fourni possède 5 onglets utilisables par l'enseignant
- Les images au format png ont parfois 4 nombres dans la « case » du tableau de nombres : « R,V, B, A ». « A » gère la transparence du pixel. Ce problème n'apparait pas en jpg.
- Pour avoir une « cellule de forme carrée » dans excel, il faut que la hauteur de ligne soit 5,5 fois plus grande que la largeur de colonne
- Cette méthode de codage pose un problème avec le nombre 255. Si le bit à coder est un « 0 » il faudrait modifier et saisir 256 (impossible à coder sur un octet). Donc l'image nécessiterait un prétraitement où tous les nombres 255 serait ramenés à 254. Impossible à la main, automatiser la tâche en python par exemple. Donc veiller à choisir des pixels où aucun nombre n'est égal à 255
- Pourquoi un cadenas avec des lettres plutôt que des chiffres. Parce que le codage en binaire d'un nombre peut prêter à confusion.

Nombre décimal Base 10	En binaire Base 2	Caractère	En binaire
3	11	« 3 » 51 ^{ème} caractère de la table ASCII	00110011